Contents:
Jan 10 Read Nov 12 Read Oct 17 Read Jan 16 Read Nov 07 Read Jan 15 Read At least to the uninitiated, carbon dating is generally assumed to be a sure-fire way to predict the age of any organism that once lived on our planet.
Without understanding the mechanics of it, we put our blind faith in the words of scientists, who assure us that carbon dating is a reliable method of determining the ages of almost everything around us. However, a little more knowledge about the exact ins and outs of carbon dating reveals that perhaps it is not quite as fool-proof a process as we may have been led to believe. At its most basic level, carbon dating is the method of determining the age of organic material by measuring the levels of carbon found in it.
Specifically, there are two types of carbon found in organic materials: It is imperative to remember that the material must have been alive at one point to absorb the carbon, meaning that carbon dating of rocks or other inorganic objects is nothing more than inaccurate guesswork. All living things absorb both types of carbon; but once it dies, it will stop absorbing.
The C is a very stable element and will not change form after being absorbed; however, C is highly unstable and in fact will immediately begin changing after absorption. Specifically, each nucleus will lose an electron, a process which is referred to as decay. Half-life refers to the amount of time it takes for an object to lose exactly half of the amount of carbon or other element stored in it. This half-life is very constant and will continue at the same rate forever. The half-life of carbon is 5, years, which means that it will take this amount of time for it to reduce from g of carbon to 50g — exactly half its original amount.
Similarly, it will take another 5, years for the amount of carbon to drop to 25g, and so on and so forth. By testing the amount of carbon stored in an object, and comparing to the original amount of carbon believed to have been stored at the time of death, scientists can estimate its age. Unfortunately, the believed amount of carbon present at the time of expiration is exactly that: It is very difficult for scientists to know how much carbon would have originally been present; one of the ways in which they have tried to overcome this difficulty was through using carbon equilibrium.
Equilibrium is the name given to the point when the rate of carbon production and carbon decay are equal. By measuring the rate of production and of decay both eminently quantifiable , scientists were able to estimate that carbon in the atmosphere would go from zero to equilibrium in 30, — 50, years.
Since the universe is estimated to be millions of years old, it was assumed that this equilibrium had already been reached.
However, in the s, the growth rate was found to be significantly higher than the decay rate; almost a third in fact. They attempted to account for this by setting as a standard year for the ratio of C to C, and measuring subsequent findings against that. In short, the answer is… sometimes. Sometimes carbon dating will agree with other evolutionary methods of age estimation, which is great.
Most concerning, though, is when the carbon dating directly opposes or contradicts other estimates. The creationists who quote Kieth and Anderson never tell you this, however. A sample that is more than fifty thousand years old shouldn't have any measurable C Coal, oil, and natural gas are supposed to be millions of years old; yet creationists say that some of them contain measurable amounts of C, enough to give them C ages in the tens of thousands of years.
How do you explain this? Radiocarbon dating doesn't work well on objects much older than twenty thousand years, because such objects have so little C left that their beta radiation is swamped out by the background radiation of cosmic rays and potassium K decay. Younger objects can easily be dated, because they still emit plenty of beta radiation, enough to be measured after the background radiation has been subtracted out of the total beta radiation.
However, in either case, the background beta radiation has to be compensated for, and, in the older objects, the amount of C they have left is less than the margin of error in measuring background radiation. As Hurley points out:. Without rather special developmental work, it is not generally practicable to measure ages in excess of about twenty thousand years, because the radioactivity of the carbon becomes so slight that it is difficult to get an accurate measurement above background radiation.
Cosmic rays form beta radiation all the time; this is the radiation that turns N to C in the first place.
K decay also forms plenty of beta radiation. Stearns, Carroll, and Clark point out that ". This radiation cannot be totally eliminated from the laboratory, so one could probably get a "radiocarbon" date of fifty thousand years from a pure carbon-free piece of tin. However, you now know why this fact doesn't at all invalidate radiocarbon dates of objects younger than twenty thousand years and is certainly no evidence for the notion that coals and oils might be no older than fifty thousand years.
Creationists such as Cook claim that cosmic radiation is now forming C in the atmosphere about one and one-third times faster than it is decaying. If we extrapolate backwards in time with the proper equations, we find that the earlier the historical period, the less C the atmosphere had. If they are right, this means all C ages greater than two or three thousand years need to be lowered drastically and that the earth can be no older than ten thousand years.
Yes, Cook is right that C is forming today faster than it's decaying. However, the amount of C has not been rising steadily as Cook maintains; instead, it has fluctuated up and down over the past ten thousand years.
Leaving comments on product information and articles can assist with future editorial and article content. Science Age of Humans. Admittedly, this old wood comes from trees that have been dead for hundreds of years, but you don't have to have an 8,year-old bristlecone pine tree alive today to validly determine that sort of date. When the organisms die, they stop incorporating new C, and the old C starts to decay back into N by emitting beta particles. One such assumption was that the megalith builders of western Europe learned the idea of megaliths from the Near-Eastern civilizations. However, you now know why this fact doesn't at all invalidate radiocarbon dates of objects younger than twenty thousand years and is certainly no evidence for the notion that coals and oils might be no older than fifty thousand years.
How do we know this? From radiocarbon dates taken from bristlecone pines. There are two ways of dating wood from bristlecone pines: Since the tree ring counts have reliably dated some specimens of wood all the way back to BC, one can check out the C dates against the tree-ring-count dates. Admittedly, this old wood comes from trees that have been dead for hundreds of years, but you don't have to have an 8,year-old bristlecone pine tree alive today to validly determine that sort of date. It is easy to correlate the inner rings of a younger living tree with the outer rings of an older dead tree.
The correlation is possible because, in the Southwest region of the United States, the widths of tree rings vary from year to year with the rainfall, and trees all over the Southwest have the same pattern of variations. When experts compare the tree-ring dates with the C dates, they find that radiocarbon ages before BC are really too young—not too old as Cook maintains.
For example, pieces of wood that date at about BC by tree-ring counts date at only BC by regular C dating and BC by Cook's creationist revision of C dating as we see in the article, "Dating, Relative and Absolute," in the Encyclopaedia Britannica. So, despite creationist claims, C before three thousand years ago was decaying faster than it was being formed and C dating errs on the side of making objects from before BC look too young , not too old. But don't trees sometimes produce more than one growth ring per year?
Wouldn't that spoil the tree-ring count? If anything, the tree-ring sequence suffers far more from missing rings than from double rings. This means that the tree-ring dates would be slightly too young, not too old. Of course, some species of tree tend to produce two or more growth rings per year. But other species produce scarcely any extra rings. Most of the tree-ring sequence is based on the bristlecone pine. This tree rarely produces even a trace of an extra ring; on the contrary, a typical bristlecone pine has up to 5 percent of its rings missing.
Concerning the sequence of rings derived from the bristlecone pine, Ferguson says:. In certain species of conifers, especially those at lower elevations or in southern latitudes, one season's growth increment may be composed of two or more flushes of growth, each of which may strongly resemble an annual ring. In the growth-ring analyses of approximately one thousand trees in the White Mountains, we have, in fact, found no more than three or four occurrences of even incipient multiple growth layers.
In years of severe drought, a bristlecone pine may fail to grow a complete ring all the way around its perimeter; we may find the ring if we bore into the tree from one angle, but not from another.
Hence at least some of the missing rings can be found. Even so, the missing rings are a far more serious problem than any double rings. Other species of trees corroborate the work that Ferguson did with bristlecone pines. Before his work, the tree-ring sequence of the sequoias had been worked out back to BC. The archaeological ring sequence had been worked out back to 59 BC. The limber pine sequence had been worked out back to 25 BC. The radiocarbon dates and tree-ring dates of these other trees agree with those Ferguson got from the bristlecone pine. But even if he had had no other trees with which to work except the bristlecone pines, that evidence alone would have allowed him to determine the tree-ring chronology back to BC.
See Renfrew for more details. So, creationists who complain about double rings in their attempts to disprove C dating are actually grasping at straws. If the Flood of Noah occurred around BC, as some creationists claim, then all the bristlecone pines would have to be less than five thousand years old. This would mean that eighty-two hundred years worth of tree rings had to form in five thousand years, which would mean that one-third of all the bristlecone pine rings would have to be extra rings.
Radiocarbon dating is a key tool archaeologists use to determine the age they are using the wrong radiocarbon information," Manning said. Radiocarbon dating, which is used to calculate the age of certain organic materials, has been found to be unreliable, and sometimes wildly so.
Creationists are forced into accepting such outlandish conclusions as these in order to jam the facts of nature into the time frame upon which their "scientific" creation model is based. Barnes has claimed that the earth's magnetic field is decaying exponentially with a half-life of fourteen hundred years. Not only does he consider this proof that the earth can be no older than ten thousand years but he also points out that a greater magnetic strength in the past would reduce C dates.
Now if the magnetic field several thousand years ago was indeed many times stronger than it is today, there would have been less cosmic radiation entering the atmosphere back then and less C would have been produced. Therefore, any C dates taken from objects of that time period would be too high. How do you answer him? Like Cook, Barnes looks at only part of the evidence. What he ignores is the great body of archaeological and geological data showing that the strength of the magnetic field has been fluctuating up and down for thousands of years and that it has reversed polarity many times in the geological past.
So, when Barnes extrapolates ten thousand years into the past, he concludes that the magnetic field was nineteen times stronger in BC than it is today, when, actually, it was only half as intense then as now. This means that radiocarbon ages of objects from that time period will be too young, just as we saw from the bristlecone pine evidence. But how does one know that the magnetic field has fluctuated and reversed polarity?
Aren't these just excuses scientists give in order to neutralize Barnes's claims? The evidence for fluctuations and reversals of the magnetic field is quite solid. Bucha, a Czech geophysicist, has used archaeological artifacts made of baked clay to determine the strength of the earth's magnetic field when they were manufactured. He found that the earth's magnetic field was 1. See Bailey, Renfrew, and Encyclopedia Britannica for details. In other words, it rose in intensity from 0. Even before the bristlecone pine calibration of C dating was worked out by Ferguson, Bucha predicted that this change in the magnetic field would make radiocarbon dates too young.