Contents:
Dinosaur bones, on the other hand, are millions of years old -- some fossils are billions of years old.
To determine the ages of these specimens, scientists need an isotope with a very long half-life. Some of the isotopes used for this purpose are uranium, uranium and potassium , each of which has a half-life of more than a million years. Unfortunately, these elements don't exist in dinosaur fossils themselves.
Each of them typically exists in igneous rock, or rock made from cooled magma. Fossils, however, form in sedimentary rock -- sediment quickly covers a dinosaur's body, and the sediment and the bones gradually turn into rock.
For that reason, igneous rocks of granitic composition are strongly enriched in U and Th compared to rocks of basaltic or ultramafic composition. A particular isotope of a particular element is called a nuclide. Potassium has a half-life of 1. In other words, mantle is not the direct source of magma. This in turn corresponds to a difference in age of closure in the early solar system.
But this sediment doesn't typically include the necessary isotopes in measurable amounts. Fossils can't form in the igneous rock that usually does contain the isotopes. The extreme temperatures of the magma would just destroy the bones. So to determine the age of sedimentary rock layers, researchers first have to find neighboring layers of Earth that include igneous rock, such as volcanic ash.
Mechanism of uranium crystallization and falling through the magma We now consider in more detail the process of fractionation that can cause uranium to be depleted at the top of magma chambers. Uranium and thorium have high melting points and as magma cools, these elements crystallize out of solution and fall to the magma chamber's depths and remelt.
This process is known as fractional crystallization. What this does is deplete the upper parts of the chamber of uranium and thorium, leaving the radiogenic lead.
As this material leaves, that which is first out will be high in lead and low in parent isotopes. This will date oldest. Magma escaping later will date younger because it is enriched in U and Th. There will be a concordance or agreement in dates obtained by these seemingly very different dating methods.
This mechanism was suggested by Jon Covey. Tarbuck and Lutgens carefully explain the process of fractional crystallization in The Earth: An Introduction to Physical Geology. They show clear drawings of crystallized minerals falling through the magma and explain that the crystallized minerals do indeed fall through the magma chamber. Further, most minerals of uranium and thorium are denser than other minerals, especially when those minerals are in the liquid phase.
Crystalline solids tend to be denser than liquids from which they came.
But the degree to which they are incorporated in other minerals with high melting points might have a greater influence, since the concentrations of uranium and thorium are so low. Now another issue is simply the atomic weight of uranium and thorium, which is high. Any compound containing them is also likely to be heavy and sink to the bottom relative to others, even in a liquid form.
If there is significant convection in the magma, this would be minimized, however. At any rate, there will be some effects of this nature that will produce some kinds of changes in concentration of uranium and thorium relative to lead from the top to the bottom of a magma chamber. Some of the patterns that are produced may appear to give valid radiometric dates. The latter may be explained away due to various mechanisms.
Let us consider processes that could cause uranium and thorium to be incorporated into minerals with a high melting point. I read that zircons absorb uranium, but not much lead. Thus they are used for U-Pb dating. But many minerals take in a lot of uranium. It is also known that uranium is highly reactive. To me this suggests that it is eager to give up its 2 outer electrons.
This would tend to produce compounds with a high dipole moment, with a positive charge on uranium and a negative charge on the other elements.
This would in turn tend to produce a high melting point, since the atoms would attract one another electrostatically. I'm guessing a little bit here. There are a number of uranium compounds with different melting points, and in general it seems that the ones with the highest melting points are more stable.
I would suppose that in magma, due to reactions, most of the uranium would end up in the most stable compounds with the highest melting points. These would also tend to have high dipole moments. Now, this would also help the uranium to be incorporated into other minerals. The electric charge distribution would create an attraction between the uranium compound and a crystallizing mineral, enabling uranium to be incorporated.
But this would be less so for lead, which reacts less strongly, and probably is not incorporated so easily into minerals. So in the minerals crystallizing at the top of the magma, uranium would be taken in more than lead. These minerals would then fall to the bottom of the magma chamber and thus uranium at the top would be depleted.
It doesn't matter if these minerals are relatively lighter than others. The point is that they are heavier than the magma. Two kinds of magma and implications for radiometric dating It turns out that magma has two sources, ocean plates and material from the continents crustal rock.
This fact has profound implications for radiometric dating. Mantle material is very low in uranium and thorium, having only 0. The source of magma for volcanic activity is subducted oceanic plates. Subduction means that these plates are pushed under the continents by motions of the earth's crust. While oceanic plates are basaltic mafic originating from the mid-oceanic ridges due to partial melting of mantle rock, the material that is magma is a combination of oceanic plate material and continental sediments.
Subducted oceanic plates begin to melt when they reach depths of about kilometers See Tarbuck, The Earth, p. In other words, mantle is not the direct source of magma. Further, Faure explains that uraninite UO sub2 is a component of igneous rocks Faure, p.
A commonly used radiometric dating technique relies on the breakdown of potassium (40K) to argon (40Ar). In igneous rocks, the potassium-argon "clock" is set. Geologists use radiometric dating to estimate how long ago rocks formed, and to When molten rock cools, forming what are called igneous rocks, radioactive.
Uraninite is also known as pitchblende. According to plate tectonic theory, continental crust overrides oceanic crust when these plates collide because the continental crust is less dense than the ocean floor. As the ocean floor sinks, it encounters increasing pressures and temperatures within the crust.
Ultimately, the pressures and temperatures are so high that the rocks in the subducted oceanic crust melt. Once the rocks melt, a plume of molten material begins to rise in the crust.
As the plume rises it melts and incorporates other crustal rocks. This rising body of magma is an open system with respect to the surrounding crustal rocks. It is possible that these physical processes have an impact on the determined radiometric age of the rock as it cools and crystallizes. Time is not a direct measurement. The actual data are the ratios of parent and daughter isotopes present in the sample. Time is one of the values that can be determined from the slope of the line representing the distribution of the isotopes.
Isotope distributions are determined by the chemical and physical factors governing a given magma chamber. Rhyolites in Yellowstone N. Most genetic models for uranium deposits in sandstones in the U.
Most of the uranium deposits in Wyoming are formed from uraniferous groundwaters derived from Precambrian granitic terranes. Uranium in the major uranium deposits in the San Juan basin of New Mexico is believed to have been derived from silicic volcanic ash from Jurassic island arcs at the edge of the continent. From the above sources, we see that another factor influencing radiometric dates is the proportion of the magma that comes from subducted oceanic plates and the proportion that comes from crustal rock. Initially, we would expect most of it to come from subducted oceanic plates, which are uranium and thorium poor and maybe lead rich.
Later, more of the crustal rock would be incorporated by melting into the magma, and thus the magma would be richer in uranium and thorium and poorer in lead. So this factor would also make the age appear to become younger with time. There are two kinds of magma, and the crustal material which is enriched in uranium also tends to be lighter.
For our topic on radiometric dating and fractional crystallization, there is nothing that would prevent uranium and thorium ores from crystallizing within the upper, lighter portion of the magma chamber and descending to the lower boundaries of the sialic portion. The upper portion of the sialic magma would be cooler since its in contact with continental rock, and the high melting point of UO sub 2 uranium dioxide, the common form in granite: The same kind of fractional crystallization would be true of non-granitic melts.